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POPL’11(Principles of Programming Languages) 

Decidable Logics Combining Heap 
Structures and Data 



SMT Solvers: Engines of logical reasoning 

SMT solvers 
�  check satisfiability in particular theories (usually QF) 
�  engines of proof that serve many programming verification and 

analysis techniques 
 

Myriad applications 
� Test input generation 
� Verifying compilers 
� Computing abstractions 
�  Invariant generation 
�  Floyd-Hoare style deductive verification 



Theories Supported by SMT Solvers 

�  Equality over uninterpreted functions and predicate symbols 
�  Real and integer arithmetic 
�  Bit-vectors 
�  Arrays 
�  Tuple/Record/Enumeration types and algebraic data-types,… 

�  Nelson-Oppen: Combining Quantifier-free theories 

�  Heap structures + Data? 



Motivation 
Reasoning with Heap structures + Data 

�  E.g., Verification conditions for verifying binary-search tree search 
     If the key k is below curr, then in the next iteration of the loop, 
       when curr is updated,  k will still be below curr. 

 
Previous work 

� HAVOC (Lahiri & Qadeer, POPL’08) 
� CSL (Bouajjani et al., CONCUR’09) 

Challenge 
 Unbounded size of heap + Quantification 



Modeling Heaps 
�  Heaps = Graphs + Data 

� heap locations: nodes of the graph 
�  field pointer f  from n to n’ : an edge from n to n’ labeled f 
� data field: function d : Loc → Data 

 
�  Decidable Logic for Heaps = 

Combination of  
           A  Decidable Logic on Graphs  
                +  
           Decidable Quantifier-free Data-logic  (e.g. QF-integers) 



Decidable Logic on Graphs 
Monadic Second-Order (MSO) logic on tree-like graphs 
Tree-like graphs: 

�  a skeleton tree 
�  precise set of nodes: unary predicate in MSO 
�  edges: binary relations in MSO 

 
 
Quite powerful:  All bounded tree-width graphs;  
                            most recursive data-structures of interest 



Recursive data-structures 
A  regular class of skeleton trees + unary predicates + binary relations 
 
A class of graphs defined by 

�   Regular class of trees:    A MSO formula         
�   Edge relations Ea:   given as an MSO formula Ea(x,y) 
�   Vertex labels:   given as an MSO formula Lb(x) 

 
DECIDABLE MSO    (intepreting on trees; tree automata) 

 
Similar to graph types (Klarlund & Schwartzbach, POPL’93) 
Trees with all nodes pointing to root:                   Doubly-linked list: 
type Tree = {                                                                 
    data left,right:Tree; 
    pointer root:Tree[root<(left+right)*>this & 
       empty(root^Tree.left union 
       root^Tree.right)]; 
} 

type Node = { 
    bool value; 
    data next:Node; 
    pointer prev:Node[this^Node.next={prev}]; 
} 

!Tr



STRAND Logic 
�  A new logic    

defined over a class of recursive data-structures R 

� where      is a MSO formula enriched by data-field functions data, 
but where the data-constraints are only allowed to refer to    and     . 

 
�  Example:  A binary tree, with all data values at leaves being 1 
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Example: Binary Search Tree 
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!bst ! "y1, y2. ( ( leftsubtree (y1, y2 )# data(y2 ) $ data(y1))
                     %  ( rightsubtree (y1, y2 )# data(y2 )> data(y1)) )



Decidable Fragments 

�  Identify a semantic decidable fragment 
�  semantically defined, but syntactically checkable 
 

�  Identify a syntactic decidable fragment  

�  Use minimal models according to a data-agnostic embedding 
relation 

STRANDdec
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Outline 
 
 
�  Semantic Decidable Fragment 
 
�  Syntactic Decidable Fragment 
 
�  Program Verification 

�  Experimental Results 
 
 
 



Our Scheme 
Graph  
models 

Minimal 
models 
(finite) 

Satisfiability-
preserving 
embedding One-way  

connection 

QF  
data-logic 

(MONA) (Z3) 

T 
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If T has a data-extension that satisfies the STRAND formula, 
      then S also does.  
Data-logic-agnostic! 



Sorted List Embedding 

!1 ! d(head) =1"d(tail) =10
6 "#y1#y2 ((y1$

* y2 )% d(y1) & d(y2 ))

!̂1 ! p1(head)" p2 (tail)"#y1#y2 ((y1$
* y2 )% p3(y1, y2 ))

tail head 
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Satisfiability-Preserving Embeddings 
�  S satisfiability-preservingly embeds in T iff  
    no matter how T satisfies the formula using some valuation 
       of the atomic data-relations,  
   S will be able to satisfy the formula using the  
     same valuation of   the atomic data-relations 
 
�  T is a minimal model iff there is no proper submodel S of T such 

that S satisfiability-preserverly embeds in T 

�                    : formulas that have finite number of minimal models 
w.r.t. the partial-order defined by satisfiability-preserving 
embeddings. 
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Observation 
�  Consider:                           
(Let                    be the atomic relational formulas of the data-logic 
in     ) 
 
�  Let M be a model of      , After fixing a particular valuation of       

and     , all data-relations      get all fixed to true or false 

�  Solution: From            , abstract      as a predicate    to get a pure 
structural formula                ! 
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�  transform the MSO formula to a tree automaton accepts precisely 
those minimal models 

�  Since the finite-ness of the language accepted by a tree automaton is 
decidable,                      is effectively checkable! 
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Minimal Model in MSO 
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Outline 
 
 
�  Semantic Decidable Fragment 
 
�  Syntactic Decidable Fragment 
 
�  Program Verification 

�  Experimental Results 
 
 
 



A syntactic decidable fragment 
                   :                          where 

�      has no quantification 
�  Elastic relations E  and non-elastic relation NE 
�  Elastic relations are unconstrained 
� Non-elastic relations only on         NE(x1,x2) 

Elastic relations: 
�   E(x,y) holds is model ó E(x,y) holds in any submodel 

                    is decidable! 
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Elastic Relations 

 
 
A relation R is elastic if for any model M and its submodel M’, for 
any              ,                  holds for M iff              holds for M’. 
E.g., LeftSubtree(x, y) is elastic but LeftChild(x, y) is not. 
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Verification Conditions 

Idea: capture the entire computation P starting from a particular 
recursively defined data-structure R using a single data structure RP 

Hoare-triples: (R, Pre, P, Post) 
R: recursively defined data-structure 
 
 
P:  
new newhead ;
newhead.data := 14;
newhead := head ;
head := head.next ;
newhead.next := t ;
 
 
 

Is                        satisfiable 
over RP ? 

Pre! STRAND",#

Post ! STRAND",#

! ! STRAND



Theorem 
The Hoare-triple (R, Pre, P, Post) does not hold iff the 
STRAND formula                                  is satisfiable on 
the trail RP . 

 

ViolatePost ! PreRP "( j#[m]" ! j )"¬PostRP

Error ! i"[m]# PreRP $( j"[i%1]$ ! j )$errori( )
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Program  Verification 
condition 

Structural Solving 
 (MONA) 

Data-constraint Solving  
(Z3 with QF-LIA) 

in                              ? 
(finitely-many minimal models) 

Time (s) Graph model 
exists? 

Bound (#Nodes) Satisfiable? Time (s) 

Sorted-list-
search 

before-loop Yes 0.34 No - - - 

in-loop Yes 0.59 No - - - 

after-loop Yes 0.18 No - - - 

Sorted-list-
insert 

before-head Yes 1.66 Yes 5 No 0.02 

before-loop Yes 0.38 No - - - 

in-loop Yes 4.46 No - - - 

after-loop Yes 13.93 Yes 7 No 0.02 

Sorted-list-
insert-error 

before-loop Yes 0.34 Yes 7 Yes 0.02 

Sorted-list-
reverse 

before-loop Yes 0.24 No - - - 

in-loop Yes 2.79 No - - - 

after-loop Yes 0.35 No - - - 

bubblesort loop-if-if Yes 7.70 No - - - 

loop-if-else Yes 6.83 No - - - 

loop-else Yes 2.73 Yes 8 No 0.02 

bst-search before-loop Yes 5.03 No - - - 

in-loop Yes 32.80 Yes 9 No 0.02 

after-loop Yes 3.27 No - - - 

bst-insert before-loop Yes 1.34 No - - - 

in-loop Yes 8.84 No - - - 

after-loop Yes 1.76 No - - - 

left-rotate bst-preserving Yes 1.59 Yes 19 No 0.05 

http://cs.uiuc.edu/~qiu2/strand/ 
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Conclusion 

STRAND: 
�  A fundamental theory of combining decision procedures for graphs 

and data 
�  A semantic decidable fragment and a syntactic decidable fragment, 

both powerful enough for program verification 
�  Experimental results combining MONA and Z3 for analyzing heap 

programs. 

Future Work: 
�  A fully-fledged engineering of an SMT solver for 
�  An efficient non-automata theoretical decision procedure (unlike 

MONA) may yield more efficient decision procedures 
�  Decidable fragments of separation logic with data 

STRANDdec



Thank you! 


