

Xiaokang Qiu1

P. Madhusudan1 Gennaro Parlato2

1University of Illinois at Urbana-Champaign
2LIAFA, CNRS and University of Paris

POPL’11(Principles of Programming Languages)

Decidable Logics Combining Heap
Structures and Data

SMT Solvers: Engines of logical reasoning

SMT solvers
�  check satisfiability in particular theories (usually QF)
�  engines of proof that serve many programming verification and

analysis techniques

Myriad applications
� Test input generation
� Verifying compilers
� Computing abstractions
�  Invariant generation
�  Floyd-Hoare style deductive verification

Theories Supported by SMT Solvers

�  Equality over uninterpreted functions and predicate symbols
�  Real and integer arithmetic
�  Bit-vectors
�  Arrays
�  Tuple/Record/Enumeration types and algebraic data-types,…

�  Nelson-Oppen: Combining Quantifier-free theories

�  Heap structures + Data?

Motivation
Reasoning with Heap structures + Data

�  E.g., Verification conditions for verifying binary-search tree search
 If the key k is below curr, then in the next iteration of the loop,
 when curr is updated, k will still be below curr.

Previous work

� HAVOC (Lahiri & Qadeer, POPL’08)
� CSL (Bouajjani et al., CONCUR’09)

Challenge
 Unbounded size of heap + Quantification

Modeling Heaps
�  Heaps = Graphs + Data

� heap locations: nodes of the graph
�  field pointer f from n to n’ : an edge from n to n’ labeled f
� data field: function d : Loc → Data

�  Decidable Logic for Heaps =

Combination of
 A Decidable Logic on Graphs
 +
 Decidable Quantifier-free Data-logic (e.g. QF-integers)

Decidable Logic on Graphs
Monadic Second-Order (MSO) logic on tree-like graphs
Tree-like graphs:

�  a skeleton tree
�  precise set of nodes: unary predicate in MSO
�  edges: binary relations in MSO

Quite powerful: All bounded tree-width graphs;
 most recursive data-structures of interest

Recursive data-structures
A regular class of skeleton trees + unary predicates + binary relations

A class of graphs defined by

�  Regular class of trees: A MSO formula
�  Edge relations Ea: given as an MSO formula Ea(x,y)
�  Vertex labels: given as an MSO formula Lb(x)

DECIDABLE MSO (intepreting on trees; tree automata)

Similar to graph types (Klarlund & Schwartzbach, POPL’93)
Trees with all nodes pointing to root: Doubly-linked list:
type Tree = {
 data left,right:Tree;
 pointer root:Tree[root<(left+right)*>this &
 empty(root^Tree.left union
 root^Tree.right)];
}

type Node = {
 bool value;
 data next:Node;
 pointer prev:Node[this^Node.next={prev}];
}

!Tr

STRAND Logic
�  A new logic

defined over a class of recursive data-structures R

� where is a MSO formula enriched by data-field functions data,
but where the data-constraints are only allowed to refer to and .

�  Example: A binary tree, with all data values at leaves being 1

STRAND

!
!x "!y .!(!x, !y)

!
!x !y

!y.(¬"z. (El (y, z)#Er (y, z))$ (data(y) =1)
!

! "######## $########)

Example: Binary Search Tree

l

l

l

l

r

r r

r

root

!bst ! "y1, y2. ((leftsubtree (y1, y2)# data(y2) $ data(y1))
 % (rightsubtree (y1, y2)# data(y2)> data(y1)))

Decidable Fragments

�  Identify a semantic decidable fragment
�  semantically defined, but syntactically checkable

�  Identify a syntactic decidable fragment

�  Use minimal models according to a data-agnostic embedding
relation

STRANDdec
sem

STRANDdec

Outline

�  Semantic Decidable Fragment

�  Syntactic Decidable Fragment

�  Program Verification

�  Experimental Results

Our Scheme
Graph
models

Minimal
models
(finite)

Satisfiability-
preserving
embedding One-way

connection

QF
data-logic

(MONA) (Z3)

T

S

If T has a data-extension that satisfies the STRAND formula,
 then S also does.
Data-logic-agnostic!

Sorted List Embedding

!1 ! d(head) =1"d(tail) =10
6 "#y1#y2 ((y1$

* y2)% d(y1) & d(y2))

!̂1 ! p1(head)" p2 (tail)"#y1#y2 ((y1$
* y2)% p3(y1, y2))

tail head

l
1 1000000

head tail

l ’
1 1000000

2 3

Satisfiability-Preserving Embeddings
�  S satisfiability-preservingly embeds in T iff
 no matter how T satisfies the formula using some valuation
 of the atomic data-relations,
 S will be able to satisfy the formula using the
 same valuation of the atomic data-relations

�  T is a minimal model iff there is no proper submodel S of T such

that S satisfiability-preserverly embeds in T

�  : formulas that have finite number of minimal models
w.r.t. the partial-order defined by satisfiability-preserving
embeddings.

STRANDdec
sem

Observation
�  Consider:
(Let be the atomic relational formulas of the data-logic
in)

�  Let M be a model of , After fixing a particular valuation of

and , all data-relations get all fixed to true or false

�  Solution: From , abstract as a predicate to get a pure
structural formula !

! = !
!x"!y."(!x, !y)

!1,!2,…,! r
!

!y ! i

!x

!
!x, !y() ! i bi
!̂
!x, !y,
!
b()

!

�  transform the MSO formula to a tree automaton accepts precisely
those minimal models

�  Since the finite-ness of the language accepted by a tree automaton is
decidable, is effectively checkable!

STRANDdec
sem

MinModel! ! "
!x . (¬"S . (

!x # S $ValidSubmodel(S)$

%
!y & S,

!
b . (

!̂(!x, !y,
!
b)

' Submodel(S)[!̂(!x, !y,
!
b)]))

)
)

Minimal Model in MSO

Minimal
Model

Generator

STRAND
formula

MSO Solver

Unbounded

DON’T KNOW

Bound on
minimal
models: k Data

Constraint
Generator

Data-Logic
Solver

SAT/UNSAT

Decision Procedure

!

ψMinModel !k!bounded

(! STRANDdec
sem)

Outline

�  Semantic Decidable Fragment

�  Syntactic Decidable Fragment

�  Program Verification

�  Experimental Results

A syntactic decidable fragment
 : where

�  has no quantification
�  Elastic relations E and non-elastic relation NE
�  Elastic relations are unconstrained
� Non-elastic relations only on NE(x1,x2)

Elastic relations:
�  E(x,y) holds is model ó E(x,y) holds in any submodel

 is decidable!

STRANDdec !
!x"!y.!(!x, !y)

!

STRANDdec

!x

Elastic Relations

A relation R is elastic if for any model M and its submodel M’, for
any , holds for M iff holds for M’.
E.g., LeftSubtree(x, y) is elastic but LeftChild(x, y) is not.

l

l

l

l

r

r r

r

root root
l’

l’ r’

e1,e2 ! "M R(e1,e2)R(e1,e2)

Outline

�  Semantic Decidable Fragment

�  Syntactic Decidable Fragment

�  Program Verification

�  Experimental Results

Verification Conditions

Idea: capture the entire computation P starting from a particular
recursively defined data-structure R using a single data structure RP

Hoare-triples: (R, Pre, P, Post)
R: recursively defined data-structure

P:
new newhead ;
newhead.data := 14;
newhead := head ;
head := head.next ;
newhead.next := t ;

Is satisfiable
over RP ?

Pre! STRAND",#

Post ! STRAND",#

! ! STRAND

Theorem
The Hoare-triple (R, Pre, P, Post) does not hold iff the
STRAND formula is satisfiable on
the trail RP .

ViolatePost ! PreRP "(j#[m]" ! j)"¬PostRP

Error ! i"[m]# PreRP $(j"[i%1]$! j)$errori()

Error!ViolatePost

x2

l

l

l

l

r

r r

r

root

x3

x1

Program Verification
condition

Structural Solving
 (MONA)

Data-constraint Solving
(Z3 with QF-LIA)

in ?
(finitely-many minimal models)

Time (s) Graph model
exists?

Bound (#Nodes) Satisfiable? Time (s)

Sorted-list-
search

before-loop Yes 0.34 No - - -

in-loop Yes 0.59 No - - -

after-loop Yes 0.18 No - - -

Sorted-list-
insert

before-head Yes 1.66 Yes 5 No 0.02

before-loop Yes 0.38 No - - -

in-loop Yes 4.46 No - - -

after-loop Yes 13.93 Yes 7 No 0.02

Sorted-list-
insert-error

before-loop Yes 0.34 Yes 7 Yes 0.02

Sorted-list-
reverse

before-loop Yes 0.24 No - - -

in-loop Yes 2.79 No - - -

after-loop Yes 0.35 No - - -

bubblesort loop-if-if Yes 7.70 No - - -

loop-if-else Yes 6.83 No - - -

loop-else Yes 2.73 Yes 8 No 0.02

bst-search before-loop Yes 5.03 No - - -

in-loop Yes 32.80 Yes 9 No 0.02

after-loop Yes 3.27 No - - -

bst-insert before-loop Yes 1.34 No - - -

in-loop Yes 8.84 No - - -

after-loop Yes 1.76 No - - -

left-rotate bst-preserving Yes 1.59 Yes 19 No 0.05

http://cs.uiuc.edu/~qiu2/strand/

STRANDdec
sem

Conclusion

STRAND:
�  A fundamental theory of combining decision procedures for graphs

and data
�  A semantic decidable fragment and a syntactic decidable fragment,

both powerful enough for program verification
�  Experimental results combining MONA and Z3 for analyzing heap

programs.

Future Work:
�  A fully-fledged engineering of an SMT solver for
�  An efficient non-automata theoretical decision procedure (unlike

MONA) may yield more efficient decision procedures
�  Decidable fragments of separation logic with data

STRANDdec

Thank you!

