Decidable Logics Combining Heap

Structures and Data

Xiaokang Qiu'
P. Madhusudan! Gennaro Parlato?

1University of Illinois at Urbana—Champaign
’LIAFA, CNRS and University of Paris

POPL’11(Principles of Programming Languages)

SMT Solvers: Engines of logical reasoning

SMT solvers
® check satisfiability in particular theories (usually QF)

® engines of proof that serve many programming verification and
analysis techniques

Myriad applications
® Test input generation
® Veritying compilers
® Computing abstractions
® Invariant generation

° Floyd—Hoare style deductive verification

Theories Supported by SMT Solvers

* Equality over uninterpreted functions and predicate symbols
® Real and integer arithmetic

® Bit-vectors

® Arrays

* Tuple/Record/Enumeration types and algebraic data-types, ...

* Nelson-Oppen: Combining Quantifier-free theories

° Heap structures + Data?

4 N

Motivation

Reasoning with Heap structures + Data
® E.g., Verification conditions for veritying binary-search tree search
If the key k is below curr, then in the next iteration of the loop,

when curr is updated, k will still be below curr.

Previous work
* HAVOC (Lahiri & Qadeer, POPL’'08)
® CSL (Bouajjani et al., CONCUR’09)

Challenge
Unbounded size of heap + Quantification

Modeling Heaps

® Heaps = Graphs + Data
° heap locations: nodes of the graph
* field pointer f from n to n’ : an edge from 7 to n’ labeled f

e data field: function d : Loc — Data

® Decidable Logic for Heaps =
Combination gf

A Decidable Logic on Graphs
|
Decidable Quantifier-free Data-logic (e.g. QF-integers)

Decidable Logic on Graphs

Monadic Second-Order (MSO) logic on tree-like graphs
Tree-like graphs:

® a skeleton tree

® precise set of nodes: unary predicate in MSO

° edges: binary relations in MSO

Quite powertul: All bounded tree-width graphs;

most recursive data-structures of interest

e

Recursive data-structures

A regular class of skeleton trees + unary predicates + binary relations

A class of graphs defined by
® Regular class of trees: A MSO formula Yy,

* Edge relations Ea: given as an MSO formula Ea(X,y)
® Vertex labels: given as an MSO formula Lb(X)

DECIDABLE MSO (intepreting on trees; tree automata)

Similar to graph types (Klarlund & Schwartzbach, POPL'93)

Trees with all nodes pointing to root: Doubly-linked list:
type Tree = { type Node = {
data left,right:Tree; bool value:
pointer root:Tree[root<(left+right)*>this & data next:Node;
empty(root”Tree.left union pointer prev:Node[this®Node.next={prev}];
root"Tree.right)]; }

/

e

STRAND Logic

® A new logic STRAND
defined over a class of recursive data-structures R
dx Vy. p(x,y)
® where ¢ is a MSO formula enriched by data-field functions data,

but where the data-constraints are only allowed to refer to ¥ and y -

® Example: A binary tree, with all data values at leaves being 1

Vy.(=3z (E,(y.2)AE,(y,2)) = (data(y)=1))

@

e

Y, = Vy,y,. ((leftsubtree (y,,y,) = data(y,) < data(y,))

-

Example: Binary Search Tree

root

A (rightsubtree (y,,y,) = data(y,) > data(y,)))

/

Decidable Fragments

sem

® Identity a semantic decidable fragment STRAND,,;
* semantically defined, but syntactically checkable

® Identity a syntactic decidable fragment STRAND,,,

® Use minimal models according to a data-agnostic embedding

relation

e

Outline

® Semantic Decidable Fragment
* Syntactic Decidable Fragment
® Program Verification

© Experimental Results

e

Our Scheme

Graph
models
Satisfiability- - QF
preserving ; 0O data-logic
embedding ne—vv.ay
x x connection
Minimal)&/
models
fini
(finite) (MONA) (Z3)
"o
If T has a data-extension that satisfies the STRAND formula,
then S also does.
Data-logic-agnosticl!
S

e
Sorted List Embedding

head tail

1N 2 3 1000000
head tail
! 1000000

@, =d(head)=1nd(tail) =10° AVY Yy, (y, = y,)=>d(y,) =d(»,))

@1 = p,(head) A p,(tail) A V)ﬁv)’z ((n, — ¥,) = p;(y;,¥,))

Satisfiability-Preserving Embeddings

o § Satiﬁabiliq-preserving@ embeds in 1 iff
no matter how 7 satisfies the formula using some valuation

of the atomic data-relations,

S will be able to satisfy the formula using the

same valuation of the atomic data-relations

e ['is a minimal model iff there is no proper submodel S of T such

that S satisfiability-preserverly embeds in T

e STRAND;" : formulas that have finite number of minimal models
w.r.t. the partial-order defined by satisfiability—preserving
_ embeddings.

Observation

e Consider: ¥ =3xVy.p(x,y)

(Let Y15V25--+Y, be the relational formulas of the data—logic
in ¢)

® Let M be amodel of ¥, After fixing a particular valuation of X
and Y , all data-relations 7, get

e Solution: From @(¥.¥), abstract ¥; as a predicate b, to geta

—

formula @(f,i,b) !

e
Minimal Model in MSO

MinModel ,=3x . (=3S .(
X € S A ValidSubmodel(S) A
Yy ES,b.(
¢(%.5.,b)
= Submodel(S)[§(X,5,b)]))

transform the MSO formula to a tree automaton accepts precisely

those minimal models

Since the finite-ness of the language accepted by a tree automaton is

decidable, STRAND," is effectively checkable!

e

Decision Procedure

Y

STRAND
formula

Minimal
Model

(Generator

MinModelw

DON’T KNOW

Bound on
minimal

models: k

(€ STRAND™)

Unbounded

Data
Constraint

Generator

Data—Logic

Solver

SAT/UNSAT

e

Outline

¢ Semantic Decidable Fragment
® Syntactic Decidable Fragment
® Program Verification

© Experimental Results

e

A syntactic decidable fragment

STRAND

e : AXVY.@(X,y) where

® @ has no quantification

e Elastic relations E and non-elastic relation NE
e Elastic relations are unconstrained

® Non-elastic relations only on X NE(x,,x,)

Elastic relations:
® E(x,y) holds is model <> E(x,y) holds in any submodel

STRAND,,. is decidable!

Elastic Relations

root root

A relation R is elastic if for any model M and its submodel M, for
any R(e,,e,) €,,¢, € M'holds for M ift R(e,e,) holds for M.

E.g., LeftSubtree(x, y) is elastic but LeftChild(x, y) is not.

e

Outline

¢ Semantic Decidable Fragment
* Syntactic Decidable Fragment
® Program Verification

© Experimental Results

e

Verification Conditions

Hoare-triples: (R, Pre, P, Post)

R: recursively defined data-structure

Pre € STRAND;

P:

new newhead ; » Is @ € STRAND satisfiable
newhead.data := 14; over R p?

newhead := head ;
head := head.next ;
newhead.next :=t;

Post € STRAND;

Idea: capture the entire computation P starting from a particular
recursively defined data-structure R using a single data structure Rp

-

Error = Vl_e[m](PreRP A (A)A errorl.)

jE[i—l](pj

Violate,, = Preg A(A ., @;) A= Posty,

Theorem

The Hoare-triple (R, Pre, P, Post) does not hold iff the
STRAND formula Error v Violate, . is satisfiable on
the trail Rp .

Program Verification Structural Solving Data-constraint Solving

condition (MONA) (23 with QF-LIA)
in STRAN. ;ZT ? Time (s) Graph model Bound (#Nodes) Satisfiable? Time (s)
(finitely-many minimal models) exists?
Sorted-list- before-loop Yes 0.34 No - - -
search .
in-loop Yes 0.59 No - - -
after-loop Yes 0.18 No - - -
Sorted-list- before-head Yes 1.66 Yes 5 No 0.02
insert
before-loop Yes 0.38 No - - -
in-loop Yes 4.46 No - - -
after-loop Yes 13.93 Yes 7 No 0.02
Sorted-list- before-loop Yes 0.34 Yes 7 Yes 0.02
insert-error
Sorted-list- before-loop Yes 0.24 No - - -
reverse
in-loop Yes 2.79 No - - -
after-loop Yes 0.35 No - - -
bubblesort loop-if-if Yes 7.70 No - = =
loop-if-else Yes 6.83 No - - -
loop-else Yes 2.73 Yes 8 No 0.02
bst-search before-loop Yes 5.03 No - - -
in-loop Yes 32.80 Yes 9 No 0.02
after-loop Yes 3.27 No - - -
bst-insert before-loop Yes 1.34 No - - -
in-loop Yes 8.84 No - - -
after-loop Yes 1.76 No - = =
left-rotate bst-preserving Yes 1.59 Yes 19 No 0.05

K http://cs.uiuc.edu/ ~qiu2 /strand/ /

/
Conclusion

STRAND:

¢ A fundamental theory of Combining decision procedures for graphs
and data

* A semantic decidable fragment and a syntactic decidable fragment,
both powertful enough for program verification

° Experimental results combining MONA and Z3 for analyzing heap
programs.

Future Work:
* A tully-fledged engineering of an SMT solver for STRAND,,,

® An efficient non-automata theoretical decision procedure (unlike
MONA) may yield more efficient decision procedures

® Decidable fragments of separation logic with data

Thank you!

